direct product, metabelian, supersoluble, monomial, A-group
Aliases: C32×C3⋊S3, C32≀C2, C34⋊2C2, C33⋊7S3, C33⋊8C6, C3⋊(S3×C32), C32⋊4(C3×C6), C32⋊5(C3×S3), SmallGroup(162,52)
Series: Derived ►Chief ►Lower central ►Upper central
C32 — C32×C3⋊S3 |
Generators and relations for C32×C3⋊S3
G = < a,b,c,d,e | a3=b3=c3=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d-1 >
Subgroups: 344 in 160 conjugacy classes, 42 normal (6 characteristic)
C1, C2, C3, C3, S3, C6, C32, C32, C32, C3×S3, C3⋊S3, C3×C6, C33, C33, S3×C32, C3×C3⋊S3, C34, C32×C3⋊S3
Quotients: C1, C2, C3, S3, C6, C32, C3×S3, C3⋊S3, C3×C6, S3×C32, C3×C3⋊S3, C32×C3⋊S3
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)
(1 14 11)(2 15 12)(3 13 10)(4 9 16)(5 7 17)(6 8 18)
(1 10 15)(2 11 13)(3 12 14)(4 7 18)(5 8 16)(6 9 17)
(1 14 11)(2 15 12)(3 13 10)(4 16 9)(5 17 7)(6 18 8)
(1 4)(2 5)(3 6)(7 15)(8 13)(9 14)(10 18)(11 16)(12 17)
G:=sub<Sym(18)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,14,11)(2,15,12)(3,13,10)(4,9,16)(5,7,17)(6,8,18), (1,10,15)(2,11,13)(3,12,14)(4,7,18)(5,8,16)(6,9,17), (1,14,11)(2,15,12)(3,13,10)(4,16,9)(5,17,7)(6,18,8), (1,4)(2,5)(3,6)(7,15)(8,13)(9,14)(10,18)(11,16)(12,17)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,14,11)(2,15,12)(3,13,10)(4,9,16)(5,7,17)(6,8,18), (1,10,15)(2,11,13)(3,12,14)(4,7,18)(5,8,16)(6,9,17), (1,14,11)(2,15,12)(3,13,10)(4,16,9)(5,17,7)(6,18,8), (1,4)(2,5)(3,6)(7,15)(8,13)(9,14)(10,18)(11,16)(12,17) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18)], [(1,14,11),(2,15,12),(3,13,10),(4,9,16),(5,7,17),(6,8,18)], [(1,10,15),(2,11,13),(3,12,14),(4,7,18),(5,8,16),(6,9,17)], [(1,14,11),(2,15,12),(3,13,10),(4,16,9),(5,17,7),(6,18,8)], [(1,4),(2,5),(3,6),(7,15),(8,13),(9,14),(10,18),(11,16),(12,17)]])
G:=TransitiveGroup(18,79);
C32×C3⋊S3 is a maximal subgroup of
C34⋊C4 S32×C32 C33⋊17D6 C33⋊1D9 C34⋊C6 C34⋊S3 C34.C6 C34.S3 C34⋊3S3 C34.7S3 C34⋊5S3 C34⋊6S3
C32×C3⋊S3 is a maximal quotient of
3+ 1+4⋊C2 3+ 1+4⋊2C2 3- 1+4⋊C2 3- 1+4⋊2C2
54 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | ··· | 3AR | 6A | ··· | 6H |
order | 1 | 2 | 3 | ··· | 3 | 3 | ··· | 3 | 6 | ··· | 6 |
size | 1 | 9 | 1 | ··· | 1 | 2 | ··· | 2 | 9 | ··· | 9 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | |||
image | C1 | C2 | C3 | C6 | S3 | C3×S3 |
kernel | C32×C3⋊S3 | C34 | C3×C3⋊S3 | C33 | C33 | C32 |
# reps | 1 | 1 | 8 | 8 | 4 | 32 |
Matrix representation of C32×C3⋊S3 ►in GL4(𝔽7) generated by
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 2 |
2 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[4,0,0,0,0,4,0,0,0,0,2,0,0,0,0,2],[2,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[2,0,0,0,0,4,0,0,0,0,2,0,0,0,0,4],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;
C32×C3⋊S3 in GAP, Magma, Sage, TeX
C_3^2\times C_3\rtimes S_3
% in TeX
G:=Group("C3^2xC3:S3");
// GroupNames label
G:=SmallGroup(162,52);
// by ID
G=gap.SmallGroup(162,52);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-3,723,2704]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations